Respuesta :

Given Side Lengths:

a = ?

b = 17.23

c = 10.86

Given Angles (in degrees):

A = ?

B = 101

C = ?

Note: We have highlighted the angle(s) and side that we need to find. Let's draw a rough sketch of the triangle:

The sin rule is:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

From the information given, we can write a ratio using the sine rule:

[tex]\frac{\sin101}{17.23}=\frac{\sin C}{10.86}[/tex]

We can cross multiply and solve for the value of angle C:

[tex]\begin{gathered} \frac{\sin101}{17.23}=\frac{\sin C}{10.86} \\ 10.86\sin 101=17.23\sin C \\ \sin C=\frac{10.86\sin101}{17.23} \\ \sin C=0.6187 \\ C=\sin ^{-1}(0.6187) \\ C=38.22\degree \end{gathered}[/tex]

Now, we know 3 angles in a triangle add up to 180 degrees. Thus, we can solve for the Angle A:

[tex]\begin{gathered} A+B+C=180 \\ A+101+38.22=180 \\ A+139.22=180 \\ A=180-139.22 \\ A=40.78\degree \end{gathered}[/tex]

We can write another ratio using the sin rule and find the side length, a. Shown below:

[tex]\frac{\sin101}{17.23}=\frac{\sin40.78}{a}[/tex]

Let's do a little algebra and solve for the side length, a:

[tex]\begin{gathered} \frac{\sin101}{17.23}=\frac{\sin40.78}{a} \\ a\sin 101=17.23\sin 40.78 \\ a=\frac{17.23\sin 40.78}{\sin 101} \\ a=11.46 \end{gathered}[/tex]Answer[tex]\begin{gathered} a=11.46\text{ cm} \\ A=40.78\degree \\ C=38.22\degree \end{gathered}[/tex]

Ver imagen BerthaD257925