Respuesta :

Solution:

Given the expression:

[tex]\frac{y^9\cdot y^8}{y^4}[/tex]

The above expression can be further expressed as

[tex]\frac{y^9\times y^8}{y^4}[/tex]

From the laws of exponents,

[tex]\begin{gathered} a^x\times a^y=a^{(x+y)} \\ \frac{a^x}{a^y}=a^{(x-y)} \end{gathered}[/tex]

Thus, we have

[tex]\begin{gathered} \frac{y^9\times y^8}{y^4}=\frac{y^{(9+8)}}{y^4} \\ =\frac{y^{17}}{y^4} \\ recall\text{ that} \\ \frac{a^x}{a^y}=a^{(x-y)} \\ thus,\text{ we have} \\ \frac{y^{17}}{y^{4}}=y^{(17-4)} \\ \Rightarrow y^{13} \end{gathered}[/tex]

Hence, we have

[tex]y^{13}[/tex]