Respuesta :

SOLUTION:

Step 1 :

In this question, we are given measures of some angles in the diagram.

From the diagram, we can see that :

[tex]\begin{gathered} \angle O=180^0-140^0=40^0\text{ ( sum of angles in a straight line)} \\ \angle M=58^0\text{ ( vertically opposite angles are equal)} \end{gathered}[/tex]

Then, we are meant to find the value of angle N.

Step 2 :

Recall that the sum of angles in a triangle = 180 degrees.

Then we have that:

[tex]\angle\text{ O + }\angle\text{ M + }\angle N=180^0[/tex][tex]\begin{gathered} 40^{\text{ 0 }}+58^0\text{ + }\angle N=180^0 \\ 98^{\text{ 0 }}+N=180^0 \\ N=180^0-98^0 \\ N=82^0\text{ -- OPTION C} \end{gathered}[/tex]