Respuesta :

Given:

[tex]f(x)=(x^2+2x)^2-11(x^2+2x)+24[/tex]

To find the x-intercept. set f(x)=0 and solve for x

That is;

[tex](x^2+2x)^2-11(x^2+2x)+24=0[/tex]

Let

x² + 2x = m

[tex]m^2-11m+24=0[/tex]

We can now solve the above quadratic equation;

Using factorisation method;

[tex]m^2-3m-8m+24=0[/tex][tex]m(m-3)-8(m-3)=0[/tex][tex](m-3)(m-8)=0[/tex]

Either m-3 = 0 or m-8=0

Either m = 3 or m=8

Recall that;

m= x² + 2x

Substitute m=3 and solve for x

3 = x² + 2x

x² + 2x- 3 =0

or

x² + 2x = 8