We know
[tex]\begin{gathered} \sqrt[]{1-(\frac{5}{7})^2}=\sqrt[]{1-\frac{25}{49}} \\ =\sqrt[]{\frac{49-25}{49}} \\ =\sqrt[]{\frac{24}{49}} \\ =\frac{\sqrt[]{24}}{7} \\ =\frac{2\sqrt[]{6}}{7} \end{gathered}[/tex]Replacing in the previous equation
[tex]\frac{\frac{5}{7}}{\frac{2\sqrt[]{6}}{7}}=\frac{5}{2\sqrt[]{6}}[/tex]Multiplying both sides of the fraction
[tex]\frac{5}{2\sqrt[]{6}}=\frac{5\sqrt[]{6}}{2\cdot6}=\frac{5\sqrt[]{6}}{12}[/tex]