Given:
There are given the function:
[tex]h(x)=-4x-5[/tex]Explanation:
To find the inverse of the function, first, we need to conver h(x) to y
Then,
[tex]\begin{gathered} h(x)=-4x-5 \\ y=-4x-5 \end{gathered}[/tex]Now,
Interchange y and x variables.
So,
[tex]\begin{gathered} y=-4x-5 \\ x=-4y-5...(1) \end{gathered}[/tex]Then,
We need to find the value for y from the equation (1):
So,
[tex]\begin{gathered} \begin{equation*} x=-4y-5 \end{equation*} \\ x+5=-4y-5+5 \\ x+5=-4y \\ y=-\frac{x+5}{4} \end{gathered}[/tex]Therefore, the inverse function is shown below:
[tex]y=-\frac{x+5}{4}[/tex]