Use the function f and the given real number a to find (f -1)'(a). (Hint: See Example 5. If an answer does not exist, enter DNE.)f(x) = cos(2x), 0 ≤ x ≤ /2, a = 1

Use the function f and the given real number a to find f 1a Hint See Example 5 If an answer does not exist enter DNEfx cos2x 0 x 2 a 1 class=

Respuesta :

The answer is:

[tex](f^{-1})^{\prime}(1)=DNE[/tex]

Explanation:

We need to use the theorem for the inverse of the derivative:

[tex](f^{-1})^{\prime}(x)=\frac{1}{f^{\prime}(f^{-1}(x))}[/tex]

Then, we need to calculate the derivative of f and its inverse.

To find the derivative, we know that the derivative of cosine is negative sine, and by the chain rule:

[tex]f^{\prime}(x)=-2\sin(2x)[/tex]

ANd to find the inverse, we call f(x) = y and solve for x:

[tex]\begin{gathered} y=\cos(2x) \\ \cos^{-1}(y)=2x \\ \end{gathered}[/tex][tex]x=\frac{\cos^{-1}(y)}{2}[/tex]

Now, we switch the variables, and we have the inverse:

[tex]f^{-1}(x)=\frac{\cos^{-1}(x)}{2}[/tex]

And now, by the theorem:

[tex](f^{-1})^{\prime}(x)=\frac{1}{f^{\prime}(f^{-1}(x))}[/tex]

To find the derivative of the inverse in x = 1, we need to find first:

[tex]f^{-1}(1)=\frac{\cos^{-1}(1)}{2}=\frac{0}{2}=0[/tex]

Now:

[tex](f^{-1})^{\prime}(x)=\frac{1}{f^{\prime}(0)}[/tex][tex]f^{\prime}(0)=-2\sin(2\cdot0)=-2\cdot0=0[/tex]

And finally:

[tex](f^{-1})^{\prime}(x)=\frac{1}{0}=DNE[/tex]

Thus, the correct answer is DNE