2. Write an equation of the ellipse with foci at (0, +2) and co-vertices at (+1, 0).དུ དུའི - 1།14︽ 》སོ – །

Given,
The foci of the ellipse is (0, +2)(0.-2)
The co vertices of the ellipse is (1, 0)(-1, 0)
The genral equation of ellipse is,
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]The equation of the foci is,
[tex]\begin{gathered} (0,\text{ }\pm c)=(0,\text{ }\pm2) \\ \text{The value of c is 2.} \end{gathered}[/tex]The equation of co vertices is,
[tex]\begin{gathered} (\pm a,\text{ 0)=(}\pm1,\text{ 0)} \\ \text{The value of a is 1.} \end{gathered}[/tex]we know that,
[tex]\begin{gathered} b^2=a^2+c^2 \\ b=\sqrt[]{5} \end{gathered}[/tex]Substituting the value then,
[tex]\begin{gathered} \frac{x^2}{1^2}+\frac{y^2}{\sqrt[]{5}^2}=1 \\ x^2+\frac{y^2}{5}=1 \end{gathered}[/tex]Hence, option d is correct.