Answer:
y=(3/2)x+5
Explanation:
Given a line with a slope of 3/2 that passes through the point (-8, -7).
To determine the equation of the line, we first use the point-slope form below.
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ m=\frac{3}{2} \\ (x_1,y_1)=(-8,-7) \end{gathered}[/tex]Substituting, we have:
[tex]\begin{gathered} y-(-7)=\frac{3}{2}(x-(-8)) \\ y+7=\frac{3}{2}(x+8) \end{gathered}[/tex]Next, we express the line in the slope-intercept form (y=mx+b).
[tex]\begin{gathered} y+7=\frac{3}{2}x+12 \\ y=\frac{3}{2}x+12-7 \\ y=\frac{3}{2}x+5 \end{gathered}[/tex]The equation of the line in slope-intercept form is:
[tex]y=\frac{3}{2}x+5[/tex]