Respuesta :

Answer:

y=(3/2)x+5

Explanation:

Given a line with a slope of 3/2 that passes through the point (-8, -7).

To determine the equation of the line, we first use the point-slope form below.

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ m=\frac{3}{2} \\ (x_1,y_1)=(-8,-7) \end{gathered}[/tex]

Substituting, we have:

[tex]\begin{gathered} y-(-7)=\frac{3}{2}(x-(-8)) \\ y+7=\frac{3}{2}(x+8) \end{gathered}[/tex]

Next, we express the line in the slope-intercept form (y=mx+b).

[tex]\begin{gathered} y+7=\frac{3}{2}x+12 \\ y=\frac{3}{2}x+12-7 \\ y=\frac{3}{2}x+5 \end{gathered}[/tex]

The equation of the line in slope-intercept form is:

[tex]y=\frac{3}{2}x+5[/tex]