The compound interest formula is given by the formula
[tex]A\text{ = }p(1+\frac{r}{100})t[/tex]Where A = Amount after t years
r = rate = 6
t = time = 5
p = $ 25000
For the first year
[tex]\begin{gathered} A=\text{ 25000(1+0.06)} \\ =25000\times1.06=26500 \end{gathered}[/tex]For the second year
P=26500+25000=51500
[tex]\begin{gathered} A=51500(1+0.06) \\ =515000\times1.06=54590 \end{gathered}[/tex]For the third year
P=54590 + 25000=79590
[tex]\begin{gathered} A=79590\text{ }\times1.06 \\ =84365.4 \end{gathered}[/tex]For the fourth year
P=84365.4 + 25000=109365.4
[tex]\begin{gathered} A=\text{ 109365.4}\times1.06 \\ =115927.324 \end{gathered}[/tex]For the fifth year
P= 115927.324 + 25000 =140927.324
[tex]\begin{gathered} A=\text{ 140927.324}\times1.06 \\ =149382.962 \end{gathered}[/tex]At the start of the 6th year
P= 149382.962+25000= 174382.96
Answer = $174382.96
Option B is correct