Respuesta :

[tex]c)y\ge\frac{1}{4}x-4[/tex]

Explanation

Step 1

let's find the equation of the line

a)slope

the slope of a line is given by:

[tex]\begin{gathered} \text{slope}=\frac{chang\text{e in y}}{\text{change in x}}=\frac{y_2-y_{1|}}{x_2-x_1} \\ \text{where} \\ P1(x_1,y_1) \\ \text{and } \\ \text{P2(x}_2,y_2) \\ \text{are 2 points from the line} \end{gathered}[/tex]

so

pick up 2 points from the line

let

P1=(0,-4)

P2=(4,-3)

now, replace in the equation to find the slope

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_{1|}}{x_2-x_1} \\ \text{slope}=\frac{-3-(-4)}{4-0}=\frac{-3+4}{4}=\frac{1}{4} \end{gathered}[/tex]

Step 2

b) the equation of the line, it can be found by using the poitn slope formula

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{where m is the slope and } \\ P1(x_1,y_1) \end{gathered}[/tex]

then, let

P1=(0,-4)

slope=1/4

replace and isolate y

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-4)=\frac{1}{4}(x-0) \\ y+4=\frac{1}{4}x \\ \text{subtract 4 in both sides} \\ y+4-4=\frac{1}{4}x-4 \\ y=\frac{1}{4}x-4 \end{gathered}[/tex]

Step 3

finally, we need the shaded region, it means all the values over the line, in other words, the values greater than the function, so

[tex]\begin{gathered} y=\frac{1}{4}x-4\Rightarrow shaded\text{ region }\Rightarrow y\ge\frac{1}{4}x-4 \\ \text{the line is continous so}\Rightarrow\ge \end{gathered}[/tex]

therfore, the answer is

[tex]c)y\ge\frac{1}{4}x-4[/tex]

I hope this helps you

Ver imagen ZachariahT11922