Question 8 of 10What is the measure of ABC in the figure below?15459B15сO A. 15°B. 30°C. 45°D. 90°E. 15°F Cannot be determined

Answer:
The measure of angle ABC is;
[tex]90^{\circ}[/tex]Explanation:
Given the figure in the attached image.
[tex]\begin{gathered} AB=CD \\ BC=AD \\ \text{ since} \\ AB=BC=15 \\ So; \\ AB=BC=CD=AD \end{gathered}[/tex]Also;
Triangle BCD is an isosceles triangle;
[tex]\begin{gathered} 2\times\measuredangle\text{CBD}+90=180 \\ \measuredangle\text{CBD}=\frac{90}{2}=45^{\circ} \end{gathered}[/tex]Then we have;
[tex]\begin{gathered} m\measuredangle ABC=m\measuredangle ABD+m\measuredangle CBD \\ m\measuredangle ABC=45^{\circ}+45^{\circ^{}} \\ m\measuredangle ABC=90^{\circ} \end{gathered}[/tex]Therefore, the measure of angle ABC is;
[tex]90^{\circ}[/tex]