Answer:
The solution to the pair of equations are
x = 4
y = 8
Explanation:
Given the pair of equations:
[tex]\begin{gathered} x=2y-6\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{.}(1) \\ y=3x-7\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.(2) \end{gathered}[/tex]Using substitution
Substitute equation (2) into (1)
[tex]\begin{gathered} x=2(3x-7)-6 \\ =6x-14-6 \\ x=6x-20 \end{gathered}[/tex]Subtract x from both sides
[tex]\begin{gathered} x-x=6x-20-x \\ 0=5x-20 \end{gathered}[/tex]Add 20 to both sides
[tex]\begin{gathered} 0+20=5x-20+20 \\ 20=5x \end{gathered}[/tex]Divide both sides by 5
[tex]\begin{gathered} \frac{20}{5}=\frac{5x}{5} \\ \\ 4=x \end{gathered}[/tex]Therefore, x = 5
Substitute x = 5 in equation (2)
[tex]\begin{gathered} y=3(5)-7 \\ =15-7 \\ =8 \end{gathered}[/tex]Therefore, y = 8