Use -2,-1,0, 1, and 2 for x and find the corresponding values of f(x) for the following exponential function. Then, choose which graph represents the exponentialfunction.f(x)=3(x-1)For each value of x, find the corresponding value for f(x).Xf(x)=3(x-1)-2-1012

Use 210 1 and 2 for x and find the corresponding values of fx for the following exponential function Then choose which graph represents the exponentialfunctionf class=

Respuesta :

Answer:

when x = -2, f(x) = 1/27

when x = -1, f(x) = 1/9

when x = 0, f(x) = 1/3

when x = 1, f(x) = 1

when x = 2, f(x) = 3

Explanation:

Given:

[tex]f(x)\text{ = 3}^{x-1}[/tex]

To find:

to get the y values for x = -2, -1, 0, 1, and 2

To determine the corresponding values of f(x), we will substitute each of the values into the given function

[tex]\begin{gathered} f(x)\text{ = 3}^{x-1} \\ when\text{ x = -2} \\ f(x)\text{ = 3}^{-2-1}\text{ = 3}^{-3} \\ f(x)\text{ = }\frac{1}{3^3}\text{ } \\ f(x)\text{ = }\frac{1}{27} \\ \\ when\text{ x = -1} \\ f(x)\text{ = 3}^{-1-1}\text{ = 3}^{-2} \\ f(x)\text{ = }\frac{1}{3^2} \\ f(x)\text{ = }\frac{1}{9} \end{gathered}[/tex][tex]\begin{gathered} when\text{ x = 0} \\ f(x)\text{ = 3}^{0-1}\text{ = 3}^{-1} \\ f(x)\text{ = }\frac{1}{3^1} \\ f(x)\text{ = }\frac{1}{3} \\ \\ when\text{ x = 1} \\ f(x)\text{ = 3}^{1-1}\text{ = 3}^0 \\ f(x)\text{ = 1} \end{gathered}[/tex][tex]\begin{gathered} when\text{ x = 2} \\ f(x)\text{ = 3}^{2-1}\text{ = 3}^1 \\ f(x)\text{ = 3} \end{gathered}[/tex]