Answer:
when x = -2, f(x) = 1/27
when x = -1, f(x) = 1/9
when x = 0, f(x) = 1/3
when x = 1, f(x) = 1
when x = 2, f(x) = 3
Explanation:
Given:
[tex]f(x)\text{ = 3}^{x-1}[/tex]
To find:
to get the y values for x = -2, -1, 0, 1, and 2
To determine the corresponding values of f(x), we will substitute each of the values into the given function
[tex]\begin{gathered} f(x)\text{ = 3}^{x-1} \\ when\text{ x = -2} \\ f(x)\text{ = 3}^{-2-1}\text{ = 3}^{-3} \\ f(x)\text{ = }\frac{1}{3^3}\text{ } \\ f(x)\text{ = }\frac{1}{27} \\ \\ when\text{ x = -1} \\ f(x)\text{ = 3}^{-1-1}\text{ = 3}^{-2} \\ f(x)\text{ = }\frac{1}{3^2} \\ f(x)\text{ = }\frac{1}{9} \end{gathered}[/tex][tex]\begin{gathered} when\text{ x = 0} \\ f(x)\text{ = 3}^{0-1}\text{ = 3}^{-1} \\ f(x)\text{ = }\frac{1}{3^1} \\ f(x)\text{ = }\frac{1}{3} \\ \\ when\text{ x = 1} \\ f(x)\text{ = 3}^{1-1}\text{ = 3}^0 \\ f(x)\text{ = 1} \end{gathered}[/tex][tex]\begin{gathered} when\text{ x = 2} \\ f(x)\text{ = 3}^{2-1}\text{ = 3}^1 \\ f(x)\text{ = 3} \end{gathered}[/tex]