Respuesta :

we have the function

[tex]f(x)=\log _{\frac{1}{4}}(x-1)+1[/tex]

Applying property of log, change the base

Remember that

[tex]\log _bM=\frac{\log _nM}{\log _nb}[/tex]

therefore

[tex]\log _{\frac{1}{4}}(x-1)=\frac{\log _{10}(x-1)}{\log _{10}\frac{1}{4}}[/tex]

substitute

[tex]f(x)=\frac{\log_{10}(x-1)}{\log_{10}\frac{1}{4}}+1[/tex]

using a graphing tool

The domain is the interval ------> (1, infinite)

The range is the interval ------> (-infinite, infinite)

end behavior

as x→+∞ ------> f(x)→-∞

as x→-∞ ------> f(x)→+∞

x-intercept ------> (5,0)

y-intercept -----> DNE

Asymptote: vertical asymptote at x=1

Construct the table

For x=2

substitute

[tex]\begin{gathered} f(2)=\frac{\log _{10}(2-1)}{\log _{10}\frac{1}{4}}+1 \\ f(2)=1 \end{gathered}[/tex]

For x=10

[tex]\begin{gathered} f(10)=\frac{\log _{10}(10-1)}{\log _{10}\frac{1}{4}}+1 \\ f(10)=-0.58 \end{gathered}[/tex]

For x=15

[tex]\begin{gathered} f(15)=\frac{\log _{10}(15-1)}{\log _{10}\frac{1}{4}}+1 \\ f(15)=-0.90 \end{gathered}[/tex]

Ver imagen LeonnaZ637930