Solution
For this case we have the following function:
[tex]h(t)=80t-16t^2[/tex]For this case the maximum occurs when t=0 and we can find the maximum with the first derivate like this:
[tex]80-32t=0[/tex]Solving for t we got:
[tex]t=\frac{80}{32}=\frac{5}{2}[/tex]Then the maximum height is:
[tex]h(2.5)=80\cdot2.5-16(2.5)^2=100[/tex]