Respuesta :

Given:

Required:

To find the value of x.

Explanation:

The line that touches the circle is a tangent line.

We know that the line drawn from the centre of the circle to the tangent is perpendicular.

Thus the given triangle is the right angle triangle.

Where adjacent= 16

opposite = x

and hypotenuse = 8+x

Use the Pythagoras theorem:

[tex](hyp.)^2=(adj.)^2+(opp.)^2[/tex][tex](x+8)^2=(16)^2+(x)^2[/tex]

Use the identity:

[tex](a+b)^2=a^2+2ab+b^2[/tex][tex]x^2+16x+64=256+x^2[/tex]

Solve by cancelling out the same term.

[tex]\begin{gathered} 16x+64=256 \\ 16x=256-64 \\ 16x=192 \\ x=\frac{192}{16} \\ x=12 \end{gathered}[/tex]

Final answer:

The value of x=12

Ver imagen CyreneM437316