The air inside a tire pump occupies a volume of 130. cm^3 at a pressure of one atmosphere. If the volume decreases to 40.0 cm^3, what is the pressure, in atmospheres, inside the pump?

Respuesta :

the Given data:

Initial volume;

[tex]V_1=130\operatorname{cm}^3[/tex]

Initial pressure;

[tex]P_1=1\text{ atm}[/tex]

Final volume;

[tex]V_2=40\operatorname{cm}^3[/tex]

According to ideal gas equation;

[tex]PV=\text{constant}[/tex]

Therefore,

[tex]P_1V_1=P_2V_2^{}[/tex]

Here, P_2 is the final pressure.

The final pressure is given as,

[tex]P_2=\frac{P_1V_1}{V_2}[/tex]

Substituting all known values,

[tex]\begin{gathered} P_2=\frac{(1\text{ atm})\times(130\operatorname{cm})}{(40\operatorname{cm}^3)} \\ =3.25\text{ atm} \end{gathered}[/tex]

Therefore, the new pressure inside the pump is 3.25 atmospheres.