Respuesta :

Given the function:

[tex]f(x)=x^{\frac{3}{2}}[/tex]

You can rewrite it in this form:

[tex]f(x)=\sqrt[]{x^3}[/tex]

Because by definition:

[tex]\sqrt[n]{b^m}=b^{\frac{m}{n}}[/tex]

• The formula for calculating the Average Rate of Change over an interval is:

[tex]m=\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}[/tex]

Where these two points are on the function:

[tex](a,f(a)),(b,f(b))[/tex]

In this case, given the interval:

[tex]\lbrack4,25\rbrack[/tex]

You can identify that:

[tex]a=4[/tex]

Then, substituting this value into the function and evaluating, you get:

[tex]f(a)=f(4)=\sqrt[]{(4)^3}=\sqrt[]{64}=8[/tex]

You can also identify that:

[tex]b=25[/tex]

Then, substituting this value into the function and evaluating, you get:

[tex]f(b)=f(25)=\sqrt[]{(25)^3}=125[/tex]

Now you can substitute values into the formula and then evaluate, in order to find the Average Rate of Change over the given interval:

[tex]\frac{\Delta y}{\Delta x}=\frac{125-8}{25-4}=\frac{39}{7}[/tex]

• In order to find the Instantaneous Rate of Change at the endpoints of the interval, you need to:

1. Derivate the function. Then, you need to find:

[tex]f^{\prime}(x)[/tex]

By definition:

[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex]

Therefore, applying this rule, you get:

[tex]\frac{dy}{dx}(x^{\frac{3}{2}})=\frac{3}{2}x^{\frac{3}{2}-1}=\frac{3}{2}x^{\frac{3}{2}-1}=\frac{3}{2}x^{\frac{1}{2}}=\frac{3}{2}\sqrt[]{x}[/tex]

Then:

[tex]f^{\prime}(x)=\frac{3}{2}\sqrt[]{x}[/tex]

2. Now you have to substitute this value of "x" into the function derivated:

[tex]x=4[/tex]

In order to find:

[tex]f^{\prime}(4)[/tex]

Then, substituting and evaluating, you get:

[tex]\begin{gathered} f^{\prime}(4)=\frac{3}{2}\sqrt[]{4} \\ \\ f^{\prime}(4)=\frac{3}{2}\sqrt[]{4} \\ \\ f^{\prime}(4)=3 \end{gathered}[/tex]

3. Substitute this value of "x" into the function derivated before:

[tex]x=25[/tex]

In order to find:

[tex]f^{\prime}(25)[/tex]

Then, substituting and evaluating, you get:

[tex]\begin{gathered} f^{\prime}(25)=\frac{3}{2}\sqrt[]{25} \\ \\ f^{\prime}(25)=\frac{15}{2} \end{gathered}[/tex]

Hence, the answers are:

[tex]\frac{\Delta y}{\Delta x}=\frac{39}{7}[/tex][tex]\begin{gathered} f^{\prime}(4)=3 \\ \\ f^{\prime}(25)=\frac{15}{2} \end{gathered}[/tex]