Respuesta :

Given the figure, we can deduce the following information:

Angle C= 80°

AC=565 ft

BC=480 ft

To determine the area of the triangle ABC and the distance AB, we first

redraw the figure as shown below:

Next, we use the formula:

[tex]c=\sqrt{a^2+b^2-2abcosC}[/tex]

where:

a=BC=480 ft

b=AC=565 ft

C= Angle C=80°

c=AB

We plug in what we know:

[tex]\begin{gathered} c=\sqrt{a^2+b^2-2abcosC} \\ c=\sqrt{480^2+565^2-2(480)(565)cos80} \\ Calculate \\ c=AB=674.86\text{ }ft \end{gathered}[/tex]

Then, we get the area by using the formula:

[tex]A=\frac{absin\theta}{2}[/tex]

where:

a=480

b=565

θ=80°

So,

[tex]\begin{gathered} A=\frac{abs\imaginaryI n\theta}{2} \\ A=\frac{(480)(565)sin80}{2} \\ Calculate \\ A=133539.93\text{ }ft^2 \end{gathered}[/tex]

Therefore, the answers are:

Distance AB=674.86 ft

Area of triangle ABC=133539.93 ft^2

Ver imagen JaelaniB6135