Answer:
The probability that Kala will take an apple and Bradley will take an orange is:
[tex]\begin{gathered} \frac{1}{6} \\ or \\ 16.67\text{\%} \end{gathered}[/tex]Explanation:
We want to find the probability that Kala will take an apple and Bradley will take an orange.
Given:
[tex]\begin{gathered} \text{Total number of fruits = 10} \\ A\text{pples =3} \\ \text{Oranges = 5} \\ \text{Bananas = 2} \end{gathered}[/tex]Since there are no replacament, the probability that Kala picks apple is;
[tex]P_1=\frac{3}{10}[/tex]The probability that Bradley will take an orange is;
[tex]P_2=\frac{5}{9}[/tex]The probability that Kala will take an apple and Bradley will take an orange will be;
[tex]\begin{gathered} P=P_1\times P_2 \\ P=\frac{3}{10}\times\frac{5}{9} \\ P=\frac{15}{90}=\frac{1}{6} \end{gathered}[/tex]Therefore, the probability that Kala will take an apple and Bradley will take an orange is:
[tex]\frac{1}{6}[/tex]As a percent the probability will be;
[tex]\begin{gathered} \frac{1}{6}\times100\text{\%} \\ =16.67\text{\%} \end{gathered}[/tex]