Respuesta :

To obtain the volume(V) of the composite object, we will sum up the volume of the two cylinders.

Let us solve for the Volume(V) of the first cylinder

The formula for the volume of the cylinder is

[tex]V=\pi r^2h[/tex]

where,

[tex]\begin{gathered} \pi=3 \\ radius=\frac{diameter}{2}=\frac{6}{2}=3in \\ h=8in \end{gathered}[/tex]

Therefore,

[tex]V_1=3\times3^2\times8=216in^3[/tex]

Let us now solve for the volume(V2) of the second cylinder

The formula for the second cylinder is,

[tex]V_2=\pi r^2t[/tex]

Where,

[tex]\begin{gathered} \pi=3 \\ r=\frac{d}{2}=\frac{10}{2}=5in \\ t=\text{thickness}=2in \end{gathered}[/tex]

Therefore,

[tex]V_2=3\times5^2\times2=150in^3[/tex]

Hence, the volume of the object is

[tex]V=V_1+V_2=216+150=366\text{unit}^3[/tex]

Therefore, the volume of the object is 366unit³.