Respuesta :

The given function is

[tex]f(x)=\frac{4}{x^3-1}[/tex]

The inverse function is

[tex]f^{-1}(x)=\sqrt[3]{\frac{4}{x}+1}[/tex]

Recall that the range of the function is the completely possible set of resulting values of the function.

Consider the function

[tex]f(x)=\frac{4}{x^3-1}[/tex]

This is given function rational polynomial function so the range is negative infinity to positive infinity except for the value of x where the denominator is zero.

[tex]x^3-1=0[/tex][tex]x^3=1[/tex][tex]x=1[/tex]

Hence the given function is not valid at x=1.

The range of the function is

[tex](-\infty,\infty)-\mleft\lbrace1\mright\rbrace[/tex]

Consider the inverse function

[tex]f^{-1}(x)=\sqrt[3]{\frac{4}{x}+1}[/tex]

This is inverse function rational polynomial function so the range is negative infinity to positive infinity except for the value of x where the denominator is zero.

[tex]\sqrt[3]{x}=0[/tex][tex]x=0[/tex]

Hence the inverse function is not valid at x=0.

The range of the inverse function is

[tex](-\infty,\infty)-\mleft\lbrace0\mright\rbrace[/tex]