Respuesta :

We have the function

[tex]f(x)=(x+6)^3[/tex]

1. For f^-1:

Let y = f(x) = (x+6)^3

Switch x and y to get:

[tex]x=(y+6)^3[/tex]

And solve for y

[tex]\begin{gathered} x^{\frac{1}{3}}=y+6 \\ x^{\frac{1}{3}}-6=y+6-6 \\ x^{\frac{1}{3}}-6=y \end{gathered}[/tex]

And we have y = f^-1(x)

Answer blank 1:

[tex]f^{-1}(x)=x^{\frac{1}{3}}-6[/tex]

2. For f o f^-1 (x):

[tex](f\circ f^{-1})(x)=f(f^{-1}(x))[/tex]

And solve

[tex]\begin{gathered} =f(x^{\frac{1}{3}}-6) \\ =(x^{\frac{1}{3}}-6+6)^3 \\ =(x^{\frac{1}{3}})^3 \\ =x \end{gathered}[/tex]

answer blank 2

[tex]x^{\frac{1}{3}}-6[/tex]

answer blank 3

[tex]x^{\frac{1}{3}}-6[/tex]

answer blank 4

[tex]x^{\frac{1}{3}}[/tex]

3. For f^-1 o f:

[tex](f^{-1}\circ f)(x)=f^{-1}(f(x))[/tex]

Solve

[tex]\begin{gathered} =f^{-1}((x+6)^3) \\ =\sqrt[3]{(x+6)^3}-6 \\ =x+6-6 \\ =x \end{gathered}[/tex]

answer blank 5

[tex](x+6)^3[/tex]

answer blank 6

[tex](x+6)^3[/tex]

answer blank 7

[tex]x+6[/tex]