Respuesta :

Answer:

The value of x are -2 and -4

Explanation:

Given the equation

[tex]x^2+6x+8=0[/tex]

To solve this by completing the square, first of all, we need to rewrite the equation as

[tex]x^2+2(3x)+8=0\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.(1)[/tex]

Note that:

[tex]\begin{gathered} (x+a)^2=x^2+2ax+b^2\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(2) \\ \\ (x-b)^2=x^2-2ax+b^2\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\text{.}(3) \end{gathered}[/tex]

If we write equation (1) as

[tex]x^2+2(3x)+3^2[/tex]

we have:

[tex](x+3)^2[/tex]

But

[tex]x^2+2(3x)+3^2=x^2+6x+9[/tex]

This is equation (1) with an addition of 1.

Subtracting 1 from this will give us exactly equation (1)

[tex](x+3)^2-1=0[/tex]

This is exactly equation (1)

Add 1 to both sides of the equation

[tex](x+3)^2=1[/tex]

Take square roots of both sides

[tex]\begin{gathered} \sqrt[]{(x+3)^2}=\pm\sqrt[]{1} \\ \\ x+3=\pm1 \\ \\ \text{Subtract 3 from both sides} \\ x=-3\pm1 \end{gathered}[/tex]

Therefore,

x = -3 + 1 = -2

OR

x = -3 - 1 = -4