if once taxi fare was $7.65 how many miles did he travel in the taxi a taxi company charges $2.25 for the first mile and then $0.20 per mile for additional mile or f equals $2.25 + $0.20(m -1) where f is the fair and m is Adam's number of miles

Respuesta :

Answer:

28 miles

Explanation:

The equation that describes the relationship between the fare and the number of miles is:

f = 2.25 + 0.20(m - 1)

Where f is the fare and m is the number of miles.

So, if the taxi fare was $7.65, we can replace f by 7.65. Then:

7.65 = 2.25 + 0.20(m - 1)

Therefore, we can calculate the number of miles by solving the equation for m. So, subtracting 2.25 from both sides:

7.65 - 2.25 = 2.25 + 0.20(m - 1) - 2.25

5.4 = 0.20(m - 1)

Dividing by 0.20, we get:

[tex]\begin{gathered} \frac{5.4}{0.20}=\frac{0.20(m-1)}{0.20} \\ 27=m-1 \end{gathered}[/tex]

Finally, add 1 to both sides:

27 + 1 = m - 1 + 1

28 = m

So, he travels 28 miles in the taxi