The radius of a circle is 6 centimeters. What is the area of a sector bounded by a 150 degree arc?Give the exact answer in simplest form._____ square centimeters

The radius of a circle is 6 centimeters What is the area of a sector bounded by a 150 degree arcGive the exact answer in simplest form square centimeters class=

Respuesta :

Concept

[tex]\text{Area of a sector = }\frac{\theta}{360}\text{ }\times\text{ }\pi r^2[/tex][tex]\begin{gathered} \theta\text{ is the angle subtend at the center} \\ r\text{ is the radius} \end{gathered}[/tex]

Step 1: List the given data

[tex]\begin{gathered} \theta=150^o \\ r\text{ = 6cm} \\ \pi\text{ = }\frac{22}{7} \end{gathered}[/tex]

Step 2: Substitute the values to find the area of the sector.

[tex]\begin{gathered} \text{Area of the sector = }\frac{150}{360}\text{ }\pi\text{ }\times6^2 \\ =\text{ }\frac{150\text{ }\pi\text{x 36}}{360\text{ }} \\ =15cm^2 \end{gathered}[/tex]

Ok