Perfect, lets start
So fisrt, you have to divide the problem in two axis, X and Y. The momentum is conserved in both
Momentum x
[tex]\begin{gathered} \sum_{n\mathop{=}0}^{\infty}Px=mv_{1x}+mv_{0x}=mv_{2x}+mv_{3x} \\ m(2m/s)+m(0)=m(1.4\cdot\cos30)+mv_{3x} \\ 2=1.21+v_{3x} \\ v_{3x}=0.79m/s \end{gathered}[/tex][tex]\begin{gathered} \sum_{n\mathop{=}0}^{\infty}Py=0=mv_{2y}+mv_{3y} \\ v_{2y}=v_{3y} \\ 1.4\cdot sin30=-v_{3y}=0.7m/s \end{gathered}[/tex]Direction
[tex]\tan^{-1}(\frac{-.7}{.79})=-41.54\degree[/tex]Magnitude
[tex]\sqrt{-.7^2+.79^2}=1.056m/s[/tex]