This is a question on Present Value of Annuity and we seek the periodic withdrawal.
[tex]\begin{gathered} F\text{VA}=\text{PMT(}\frac{(1+\frac{i}{m})^{nm}-1}{\frac{i}{m}}) \\ \text{Therefore, PMT=}\frac{FVA}{(\frac{(1+\frac{i}{m})^{nm}-1}{\frac{i}{m}})} \end{gathered}[/tex]
where:
FVA = Future value of annuity
PMT = Periodic Withdrawal
i = interest/discount rate
n = no of years
m = no of compundings per interest period
[tex]\text{PMT=}\frac{300000}{(\frac{(1+\frac{0.0445}{365})^{22\times365}-1}{\frac{0.0445}{365}})}=22.01[/tex]
PMT = $22.01