Respuesta :

Explanation

We are asked to find the value of v and w

To do so, we will make use of trigonometric identities

Let us get the value of v first

[tex]\begin{gathered} sin65^0=\frac{opposite}{hypotenuse}=\frac{v}{15} \\ \\ sin65=\frac{v}{15} \end{gathered}[/tex]

cross multiply to get v

[tex]\begin{gathered} v=15\times sin65 \\ v=13.6 \end{gathered}[/tex]

The value of v is 13.6

Next, we will get w

[tex]\begin{gathered} sin\text{ w=}\frac{opposite}{hypotenuse}=\frac{v}{21}=\frac{13.6}{21} \\ \\ sin\text{ w=}\frac{13.6}{21} \\ \\ sin\text{ w=0.6476} \\ \\ w=\sin^{-1}(0.6476) \\ \\ w=40.4^0 \end{gathered}[/tex]

The value of w is 40.4 degrees