one way to do this is to solve it (to check your answer)
sqrt 6 x sqrt 10= 7,745
A. SQRT 60 = 7,745 this one is correct
B. 20 no
C. 60 no
D. SQRT 16= 4 no
E. 2 OVER SQRT 15= 7,745 this one is correct
F. SQRT 4 X SQRT 15=7,745 this one is correct
you need to do the sqrt of each number
[tex]\begin{gathered} \sqrt[]{6}\text{ = 2,449 }\sqrt[]{10}=3,16 \\ \sqrt[]{6}\cdot\sqrt[]{10}=\text{ 2,449}\cdot3,16\text{ = 7,74} \end{gathered}[/tex]but all this is just a way to check the answer, to solve this you need to apply properties and get to the option, like this=
A=
[tex]\sqrt[]{60}=\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}[/tex]so A it's correct
you simplify the sqrt to find out if it's the same
let's make the E
E=
[tex]2\sqrt[]{15}=\sqrt[]{4}\cdot\sqrt[]{15}=\sqrt[]{4\cdot15}=\sqrt[]{60}\text{ =}\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}[/tex]and last one the f
F=
[tex]\sqrt[]{4}\cdot\sqrt[]{15}=\sqrt[]{4\cdot15}=\sqrt[]{60}=\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}[/tex]