Respuesta :

Given

n= 4equal-width rectangles

[tex]\int ^2_{-2}f(x)=\int ^2_{-2}(x^3+8)dx[/tex]

To determine the height of each rectangle.

Now,

The right end point of each sub-interval is 2.

Let f(x) be the height of the rectangle.

therefore, for the rectangle bases is 1 in each case.

That implies the value of x in each integrand is, 2,1,0,-1,-2.

Then,

For x=2,

[tex]\begin{gathered} f(2)=2^3+8 \\ =8+8 \\ =16 \end{gathered}[/tex]

For x=1,

[tex]\begin{gathered} f(1)=1^3+8 \\ =1+8 \\ =9 \end{gathered}[/tex]

For x=0,

[tex]\begin{gathered} f(0)=0^3+8 \\ =8 \end{gathered}[/tex]

For x=-1,

[tex]\begin{gathered} f(-1)=(-1)^3+8 \\ =-1+8 \\ =7 \end{gathered}[/tex]

For x=-2,

[tex]\begin{gathered} f(-2)=(-2)^3+8 \\ =-8+8 \\ =0 \end{gathered}[/tex]

Hence, the height of each rectangle is,

Ver imagen MycahS158986