Respuesta :

step 1

Find the value of sin

we have that

[tex]\sin ^2(\theta)+\cos ^2(\theta)=1^{}[/tex]

substitute the value of cosine

[tex]\begin{gathered} \sin ^2(\theta)+(-\frac{12}{13})^2=1^{} \\ \\ \sin ^2(\theta)^{}=1^{}-(\frac{144}{169}) \\ \\ \sin ^2(\theta)^{}=(\frac{25}{169}) \\ \\ \sin ^{}(\theta)^{}=\frac{5}{13} \end{gathered}[/tex]

step 2

Find tan

[tex]\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}[/tex]

substitute the given values

[tex]\tan (\theta)=-\frac{5}{12}[/tex]

step 3

Find cot

[tex]\cot (\theta)=\frac{1}{\tan (\theta)}[/tex]

substitute

[tex]\cot (\theta)=-\frac{12}{5}[/tex]

step 4

Find sec

[tex]\sec (\theta)=\frac{1}{\cos (\theta)}[/tex]

substitute

[tex]\sec (\theta)=-\frac{13}{12}[/tex]

step 5

Find csc

[tex]\csc (\theta)=\frac{1}{\sin (\theta)}[/tex]

substitute

[tex]\csc (\theta)=\frac{13}{5}[/tex]