Respuesta :

As given by the question

There are given that the function:

[tex]f(x)=x^2+3[/tex]

Now,

From the given formula:

[tex]\frac{f(x+h)-f(x)}{h}[/tex]

Then,

First find the equation for f(x + h)

So,

[tex]\begin{gathered} f(x)=x^2+3 \\ f(x+h)=(x+h^{})^2+3 \\ f(x+h)=x^2+h^2+2xh+3 \end{gathered}[/tex]

Then,

Put both values into the given formula:

So,

[tex]\frac{f(x+h)-f(x)}{h}=\frac{x^2+h^2+2xh+3-x^2-3}{h}[/tex]

Then,

[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{h^2+2xh}{h} \\ =\frac{h(h^{}+2x)}{h} \\ =h+2x \\ =2x+h \end{gathered}[/tex]

Hence, the difference quotient is 2x + h.