Given,
The mass of the ball, m=8 kg
The initial velocity of the ball, u=12 m/s
The final velocity of the ball v=12 m/s
The initial kinetic energy of the ball is given by,
[tex]K_1=\frac{1}{2}mu^2[/tex]On substituting the known values,
[tex]\begin{gathered} K_1=\frac{1}{2}\times8\times4^2 \\ =64\text{ J} \end{gathered}[/tex]Thus the initial kinetic energy is 64 J
The final kinetic energy is given by,
[tex]K_2=\frac{1}{2}mv^2[/tex]On substituting the known values,
[tex]\begin{gathered} K_2=\frac{1}{2}\times8\times12^2 \\ =576\text{ J} \end{gathered}[/tex]Thus the final kinetic energy is 576 J
The work done on the ball is given by the change in the kinetic energy of the ball.
Therefore the work done on the ball is
[tex]\begin{gathered} W=K_2-K_1 \\ =576-64 \\ =512\text{ J} \end{gathered}[/tex]Therefore the work done on the ball is 512 J