Respuesta :

[tex]\begin{gathered} \csc \theta=-\frac{6}{5} \\ \tan \theta>0 \\ \cos \frac{\theta}{2}=\text{?} \end{gathered}[/tex]

Half Angle Formula

[tex]\cos \frac{\theta}{2}=\pm\sqrt[\square]{\frac{1+\cos\theta}{2}}[/tex][tex]\tan \theta>0\text{ and csc}\theta\text{ is negative in the third quadrant}[/tex][tex]\begin{gathered} \csc \theta=-\frac{6}{5}=\frac{r}{y} \\ x^2+y^2=r^2 \\ x=\pm\sqrt[\square]{r^2-y^2} \\ x=\pm\sqrt[\square]{6^2-(-5)^2} \\ x=\pm\sqrt[\square]{36-25} \\ x=\pm\sqrt[\square]{11} \\ \text{x is negative since the angle is on the 3rd quadrant} \end{gathered}[/tex][tex]\begin{gathered} \cos \theta=\frac{x}{r}=\frac{-\sqrt[\square]{11}}{6} \\ \cos \frac{\theta}{2}=\pm\sqrt[\square]{\frac{1+\cos\theta}{2}} \\ \cos \frac{\theta}{2}is\text{ also negative in the 3rd quadrant} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{1+\frac{-\sqrt[\square]{11}}{6}}{2}} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{\frac{6-\sqrt[\square]{11}}{6}}{2}} \\ \cos \frac{\theta}{2}=-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}} \\ \\ \end{gathered}[/tex]

Answer:

[tex]\cos \frac{\theta}{2}=-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}}[/tex]

Checking:

[tex]\begin{gathered} \frac{\theta}{2}=\cos ^{-1}(-\sqrt[\square]{\frac{6-\sqrt[\square]{11}}{12}}) \\ \frac{\theta}{2}=118.22^{\circ} \\ \theta=236.44^{\circ}\text{ (3rd quadrant)} \end{gathered}[/tex]

Also,

[tex]\csc \theta=\frac{1}{\sin\theta}=\frac{1}{\sin (236.44)}=-\frac{6}{5}\text{ QED}[/tex]

The answer is none of the choices