For the points (√5, √2) and (4√5, -5√2).(a) Find the exact distance between the points.(b) Find the midpoint of the line segment whose endpoints are the given points

Respuesta :

Answer:

(a)3√13 Units

(b)

[tex](\frac{5\sqrt{5}}{2},-2\sqrt{2})[/tex]

Explanation:

Part A

We determine the distance between the two points using the distance formula.

[tex]\text{Distance}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Therefore, the distance between points (√5, √2) and (4√5, -5√2) is:

[tex]\begin{gathered} =\sqrt{(4\sqrt{5}-\sqrt{5})^2+(-5\sqrt{2}-\sqrt{2})^2} \\ =\sqrt{(3\sqrt{5})^2+(-6\sqrt{2})^2} \\ =\sqrt{(3^2\times5)+((-6)^2\times2)} \\ =\sqrt{45+72} \\ =\sqrt{117} \\ =3\sqrt{13}\text{ Units} \end{gathered}[/tex]

The exact distance between the points is 3√13 Units.

Part B

We determine the midpoint of the line segment whose endpoints are the given points using the midpoint formula.

[tex]\text{Midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Therefore:

[tex]\begin{gathered} \text{Midpoint}=(\frac{\sqrt{5}+4\sqrt{5}}{2},\frac{\sqrt{2}+(-5\sqrt{2})}{2}) \\ =(\frac{5\sqrt{5}}{2},\frac{-4\sqrt{2})}{2}) \\ =(\frac{5\sqrt{5}}{2},-2\sqrt{2}) \end{gathered}[/tex]