Respuesta :

Given:

[tex]a=\frac{4}{5}\text{ and }b=\frac{2}{9}[/tex]

Required:

[tex]We\text{ need to evaluate the expression }-3b+a\text{ when }a=\frac{4}{5}\text{ and }b=\frac{2}{9}.[/tex]

Explanation:

[tex]Replace\text{ }a=\frac{4}{5}\text{ and }b=\frac{2}{9}\text{ in the expression}-3b+a.\text{ }[/tex][tex]-3b+a=-3(\frac{2}{9})+\frac{4}{5}[/tex]

Cancel out the common term.

[tex]-3b+a=-\frac{2}{3}+\frac{4}{5}[/tex]

The least common multiple of 3 and 5 is 15.

Making the denominator 15.

[tex]-3b+a=-\frac{2}{3}\times\frac{5}{5}+\frac{4}{5}\times\frac{3}{3}[/tex]

[tex]-3b+a=-\frac{10}{15}+\frac{12}{15}[/tex]

[tex]-3b+a=\frac{-10+12}{15}[/tex]

[tex]-3b+a=\frac{2}{15}[/tex]

Final answer:

[tex]\frac{2}{15}[/tex]