Respuesta :

Given:

[tex]2sinx+\sqrt{3}cotx=sinx[/tex]

The partially solved equation is,

[tex]sin^2x+\sqrt{3}cosx=0[/tex]

To find: The final step

Explanation:

We know that,

The trigonometric identity is,

[tex]1-cos^2x=s\imaginaryI n^2x[/tex]

Using this we get,

[tex]1-cos^2x+\sqrt{3}cosx=0[/tex]

Multiplying by -1 on both sides, we get

[tex]cos^2x-\sqrt{3}\cos x-1=0[/tex]

Final answer:

[tex]cos^2x-\sqrt{3}\cos x-1=0[/tex]