The equation 2sin x+sqrt3 cot x=sin x is partially solved below

Given:
[tex]2sinx+\sqrt{3}cotx=sinx[/tex]The partially solved equation is,
[tex]sin^2x+\sqrt{3}cosx=0[/tex]To find: The final step
Explanation:
We know that,
The trigonometric identity is,
[tex]1-cos^2x=s\imaginaryI n^2x[/tex]Using this we get,
[tex]1-cos^2x+\sqrt{3}cosx=0[/tex]Multiplying by -1 on both sides, we get
[tex]cos^2x-\sqrt{3}\cos x-1=0[/tex]Final answer:
[tex]cos^2x-\sqrt{3}\cos x-1=0[/tex]