Ryan has an exterminator visit regularly to control an ongoing cockroach problem. It's been working, and the population has declined by 10% every year. If the population is currently 1,245 cockroaches, how many will there be in 3 years?If necessary, round your answer to the nearest whole number.

Respuesta :

Since the population declines by 10% each year, then, the population on a given year is 90% of the population of the previous year.

Starting with a population of 1,245 cockroaches, calculate what is 90% of 1,245 to find the population after 1 year by multiplying 1,245 times 90/100:

[tex]1,245\times\frac{90}{100}=1120.5[/tex]

Next, calculate what is 90% of 1120.5 to find the population after two years:

[tex]1120.5\times\frac{90}{100}=1008.45[/tex]

Finally, calculate what is 90% of 1008.45 to find the population after three years:

[tex]1008.45\times\frac{90}{100}=907.605[/tex]

To the nearest whole number, there will be 908 cockroaches after three years.

Notice that another way to find the answer is to multiply 1,245 times (90/100)^3:

[tex]1245\times\mleft(\frac{90}{100}\mright)^3=907.605\approx908[/tex]

Therefore, the population of cockroaches after 3 years will be 908.

Otras preguntas