Which expression is equivalent to the difference shown?Slenm+8m? = 4m

Solution
- The solution steps for the question is given below:
[tex]\begin{gathered} \frac{5}{m}-\frac{m+8}{m^2-4m} \\ \\ \text{ Factorize the bottom of the right-hand term} \\ \frac{5}{m}-\frac{m+8}{m(m-4)} \\ \\ \text{ The LCM of }m\text{ and }m(m-4)\text{ is }m(m-4) \\ \text{ Thus, we have:} \\ \\ \frac{5(m-4)}{m(m-4)}-\frac{m+8}{m(m-4)} \\ \\ \text{ Thus, we can combine both expressions since they have the same denominator} \\ \frac{5(m-4)-(m+8)}{m(m-4)} \\ \\ \text{ Expand the numerator and proceed to simplify} \\ \\ \frac{5m-20-m-8}{m(m-4)}=\frac{4m-28}{m(m-4)}=\frac{4(m-7)}{m(m-4)} \end{gathered}[/tex]Final Answer
The answer is:
[tex]\frac{4(m-7)}{m(m-4)}\text{ \lparen OPTION B\rparen}[/tex]