When a sample of Radium-226 decays, the energy released is 7.81 ×10^-13 J.What is the mass defectA. 8.68×10^-30 kgB. 2.60×10^-21 kgC. 3.84 × 10^20 kgD. 1.15×10^29 kg

Respuesta :

The mass defect and the energy released in radioactive decay are related by the following equation:

[tex]E=mc^2[/tex]

Where:

[tex]\begin{gathered} E=\text{ Energy} \\ m=\text{ mass} \\ c=\text{ speed of light} \end{gathered}[/tex]

We solve for the mass by dividing both sides by the square of the velocity of light:

[tex]\frac{E}{c^2}=m[/tex]

The speed of light is a constant and is equal to:

[tex]c=3\times10^8\frac{m}{s}[/tex]

Now we replace the given values:

[tex]\frac{7.81\times10^{-13}J}{(3\times10^8\frac{m}{s})^2}=m[/tex]

Now we solve the square in the denominator:

[tex]\frac{7.81\times10^{-13}J}{9\times10^{16}\frac{m}{s}}=m[/tex]

Now we solve the operations and we get:

[tex]8.68\times10^{-30}\operatorname{kg}=m[/tex]

Therefore, the mass defect is option A.