Given the function defined in the table below, find the average rate of change, in simplest form, of the function over the interval 3 < x < 6. х f(x) 0 8 3 10 6 12 9 14 12 16

Respuesta :

in the interval

[tex]3\le x\le6[/tex]

we can see that

[tex]\begin{gathered} \text{when x=3, y=f(x)=10} \\ \text{when x=6, y=f(x)=12} \end{gathered}[/tex]

the average rate of change is the slope m. The formula for m is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where

[tex]\begin{gathered} (x_1,y_1)=(3,10) \\ \text{and} \\ (x_2,y_2)=(6,12) \end{gathered}[/tex]

By substituying these values, we have

[tex]m=\frac{12-10}{6-3}[/tex]

hence,

[tex]m=\frac{2}{3}[/tex]

Therefore, the average rate of change is 2/3=0.667