Respuesta :

To answer this question we have to use the combined law of gases:

[tex]\frac{P1V1}{T1}=\frac{P2V2}{T2}[/tex]

Convert the temperatures to kelvin degrees:

[tex]\begin{gathered} 53+273.15=326.15 \\ 91.7+273.15=364.85 \end{gathered}[/tex]

Solve the equation for V2 and replace for the given values:

[tex]\begin{gathered} V2=\frac{P1V1T2}{T1P2} \\ V2=\frac{5.41atm\cdot31.7L\cdot364.85K}{326.15K\cdot1.9atm} \\ V2=100.97L \end{gathered}[/tex]

It means that the volume of the gas will be 101L.

The correct answer is c. 101.