ANSWER
32
STEP-BY-STEP EXPLANATION:
The expression is given below as
[tex](\frac{1}{2})^{-5}[/tex]To solve this expression, we need to apply the law of indices
[tex]x^{-1}\text{ = }\frac{1\text{ }}{x^{1^{}}}[/tex]Let x = 1/2
[tex](x)^{-5}\text{ = }\frac{1}{x^5}[/tex]substitute the value of x = 1/2 into the above-simplified expression
[tex]\begin{gathered} (\frac{1}{2})^{-5}\text{ = }\frac{1}{(\frac{1}{2})^5} \\ =\text{ }\frac{1}{(\frac{1}{32})} \\ =\text{ }\frac{32\cdot\text{ 1}}{1} \\ =\text{ 32} \end{gathered}[/tex]Hence, (1/2)^-5 is 32