Respuesta :

ANSWER

32

STEP-BY-STEP EXPLANATION:

The expression is given below as

[tex](\frac{1}{2})^{-5}[/tex]

To solve this expression, we need to apply the law of indices

[tex]x^{-1}\text{ = }\frac{1\text{ }}{x^{1^{}}}[/tex]

Let x = 1/2

[tex](x)^{-5}\text{ = }\frac{1}{x^5}[/tex]

substitute the value of x = 1/2 into the above-simplified expression

[tex]\begin{gathered} (\frac{1}{2})^{-5}\text{ = }\frac{1}{(\frac{1}{2})^5} \\ =\text{ }\frac{1}{(\frac{1}{32})} \\ =\text{ }\frac{32\cdot\text{ 1}}{1} \\ =\text{ 32} \end{gathered}[/tex]

Hence, (1/2)^-5 is 32