Respuesta :

Given the equation:

[tex]2tan^2x-secx=1[/tex]

Let's find the true equations

First simplify using trigonometric identity

[tex]2(sec^2x-1)-secx=1[/tex]

Apply distributive property:

[tex]\begin{gathered} 2sec^2x-2-secx=1 \\ \\ Add\text{ 2 to both sides:} \\ 2sec^2x-2+2-secx=1+2 \\ \\ 2sec^2x-secx=3 \end{gathered}[/tex]

• Now, let's verify where: sec x = -1:

[tex]\begin{gathered} 2(-1)^2-(-1)=3 \\ \\ 2+1=3 \\ \\ 3=3 \end{gathered}[/tex]

Hence, secx = 1 is true.

• For sec x = 3:

[tex]\begin{gathered} 2(3)^2-3^2=3 \\ \\ 18-9=3 \\ \\ 9=3 \end{gathered}[/tex]

Hence, sec(x) = 3 is not true,

• For tanx = 3, we have:

Rewrite using trigonometric identity

[tex]\begin{gathered} 2tan^2x-\sqrt{1+tan^2x}=1 \\ \\ 2(3)^2-\sqrt{1+(3)^2}=1 \\ \\ 18-\sqrt{10}=1 \end{gathered}[/tex]

tan x = 3 is not true,

• For tanx = -1:

[tex]\begin{gathered} 2tan^2x-\sqrt{1+tan^2x}=1 \\ \\ 2(-1)^2-\sqrt{1+(-1)^2}=1 \\ \\ -2-\sqrt{2}=1 \end{gathered}[/tex]

Hence tanx = -1 is not true.

• Now, for sec x = 3/2, we have:

[tex]\begin{gathered} 2sec^2x-secx=3 \\ \\ 2(\frac{3}{2})^2-(\frac{3}{2})=3 \\ \\ 2(\frac{9}{4})-\frac{3}{2}=3 \\ \\ \frac{9}{2}-\frac{3}{2}=3 \\ \\ 3=3 \end{gathered}[/tex]

Hence, secx = 3/2 is true.

Therefore, the true equations are:

A. secx = -1

E. secx = 3/2

ANSWER:

A. sec x = -1

E. sec x = 3/2