Answer:
The total volume of the two figures is;
[tex]36\text{ }in^3[/tex]Explanation:
Given that the Rectangular prism J has the dimensions;
2 in tall, 4 in wide, and 3 inches deep;
[tex]\begin{gathered} l=2\text{ in} \\ b=4\text{ in} \\ h=3\text{ in} \end{gathered}[/tex]Recall that the volume of a prism can be calculated using the formula;
[tex]V=l\times b\times h[/tex]substituting the given values;
[tex]\begin{gathered} V_J=2\times4\times3in^3 \\ V_J=24\text{ }in^3 \end{gathered}[/tex]Also given that the volume of J is twice the volume of right rectangular prism K.
[tex]\begin{gathered} V_J=2V_K \\ V_K=\frac{V_J}{2}=\frac{24}{2} \\ V_K=12\text{ }in^3 \end{gathered}[/tex]The total volume of these two figures will then be;
[tex]\begin{gathered} V_T=V_J+V_K \\ V_T=(24+12)in^3 \\ V_T=36\text{ }in^3 \end{gathered}[/tex]Therefore, the total volume of the two figures is;
[tex]36\text{ }in^3[/tex]