Given:
Total athletes = 6
Chosen and arranged in row = 2
Find-:How many ways can this be done
Sol:
Chosen 2 athletes.
Combination without repetition is:
[tex]=\frac{(n+r-1)!}{r!(n-1)!}[/tex]Where ,
[tex]\begin{gathered} n=6 \\ \\ r=2 \end{gathered}[/tex]So,
[tex]\begin{gathered} =\frac{(6+2-1)!}{2!(6-1)!} \\ \\ =\frac{7!}{2!\times5!} \\ \\ =\frac{7\times6\times5!}{2\times1\times5!} \\ \\ =7\times3 \\ \\ =21 \end{gathered}[/tex]So total 21 ways