Drag the labels to the correct locations on the table. Not all tiles will be used. Match each attribute of a parabola to the correct quadratic function. vertex: (-1,4) (-1,34 focus: focus: (1,3) directrix: Y=35 directrix: y=4 vertex: (-1,-4) vertex: (1,4) focus: (-1,4) directrix: y=3 : : f(x) = -(x - 1)2 + 4 f(x) = 2(x + 1)2 + 4

Drag the labels to the correct locations on the table Not all tiles will be used Match each attribute of a parabola to the correct quadratic function vertex 14 class=

Respuesta :

First equation

[tex]f(x)=-(x-1)^2+4[/tex]

The general form of a parabola is given as

[tex]y=a(x-h)+k[/tex]

Comparing the general form with the first equation

[tex]a=-1,h=1,k=4[/tex]

The vertex of a parabola is given as

[tex]Vertex=(h,k)[/tex]

Therefore, the vertex of the first parabola is (1, 4)

The focus of a parabola is given as

[tex]Focus=(h,k+\frac{1}{4a})[/tex]

Substitute the values of h, k and a into the formula for focus

This gives

[tex]\begin{gathered} \text{Focus}=(1,4+\frac{1}{4(-1)}) \\ \text{Focus}=(1,4+\frac{1}{-4}) \\ \text{Focus}=(1,\frac{15}{4}) \\ \text{Focus}=(1,3\frac{3}{4}) \end{gathered}[/tex]

Therefore, the focus of the first equation is

[tex]\text{Focus=}(1,3\frac{3}{4})[/tex]

The directrix of the parabola will have the equation

[tex]y=k-\frac{1}{4a}[/tex]

Substituting values gives

[tex]\begin{gathered} y=4-\frac{1}{4(-1)} \\ y=4-\frac{1}{-4} \\ y=4+\frac{1}{4} \\ y=\frac{17}{4} \\ y=4\frac{1}{4} \end{gathered}[/tex]

The directrix of the first equation has the eqaution

[tex]y=4\frac{1}{4}[/tex]

Therefore, all the attribute of the first equation are

[tex]\begin{gathered} \text{vertex}=(1,4) \\ \text{focus}=(1,3\frac{3}{4}) \\ \text{directrix}\Rightarrow y=4\frac{1}{4} \end{gathered}[/tex]

For the second equation

[tex]y=2(x+1)^2+4[/tex]

Comparing with the general form of a parabola

It follows

[tex]a=2,h=-1,k=4[/tex]

Following the calculations as above

Then

All the attributes of the second equations are

[tex]\begin{gathered} \text{vertex}=(-1,4) \\ \text{focus}=(-1,4\frac{1}{8}) \\ \text{directrix}\Rightarrow y=3\frac{7}{8} \end{gathered}[/tex]