1217The Elimination MethodSolve the following system of equations with the ELIMINATION METHOD.Write your answer as an Ordered Pair.If infinitely many solutions exist, enter 0 ( infinity)If no solution exists, enter DNESystem of EquationsSolution4x + 8y = 6812x +3y=39

Respuesta :

Given: The systems of equation below

[tex]\begin{gathered} 4x+8y=68 \\ 12x+3y=39 \end{gathered}[/tex]

To Determine: The solution of the system of equations using elimination method

Eliminate x

To eliminate x, multiply the first equation by 3 and the second equation by 1

[tex]\begin{gathered} 3\times(4x+8y=68)=12x+24y=204 \\ 1\times(12x+3y=39)=12x+3y=39 \end{gathered}[/tex]

Combine two equations by subtracting the second equation from the first

[tex]\begin{gathered} 12x-12x+24y-3y=204-39 \\ 21y=165 \\ \frac{21y}{21}=\frac{165}{21} \\ y=\frac{165}{21}=\frac{55}{7} \end{gathered}[/tex]

Substitute y in the first equation to get x

[tex]\begin{gathered} 4x+8(\frac{55}{7})=68 \\ 4x+\frac{440}{7}=68 \\ 4x=68-\frac{440}{7} \\ 4x=\frac{476-440}{7} \\ 4x=\frac{36}{7} \\ x=\frac{36}{7}\times\frac{1}{4} \\ x=\frac{9}{7} \end{gathered}[/tex]

Hence, the solution is

[tex](\frac{9}{7},\frac{55}{7})[/tex]

(9/7 , 55/7)